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ABSTRACT
Graph Neural Networks (GNNs) have emerged as pivotal architec-
tures in analyzing graph-structured data, and their expansive appli-
cation in sensitive domains requires a comprehensive understand-
ing of their decision-making processes — necessitating a framework
for GNN explainability. An explanation function for GNNs takes a
pre-trained GNN along with a graph as input, to produce a ‘suffi-
cient statistic’ subgraphwith respect to the graph label. Amain chal-
lenge in studying GNN explainability is to provide measures that
evaluate the performance of these explanation functions. A popular
family of measurements is Fidelity, including 𝐹𝑖𝑑+, 𝐹𝑖𝑑− , and 𝐹𝑖𝑑Δ.
Fidelity measures the faithfulness of an explanation by calculating
the difference in themodel outputwhen keeping (𝐹𝑖𝑑− ) or removing
(𝐹𝑖𝑑+) the explanation. In this paper, we argue that Fidelity measure-
ments are unreliable due to potential distribution shifts between
original graphs and the subgraph generated by keeping or remov-
ing explanation subgraphs . Subsequently, a robust class of fidelity
measures is introduced. Extensive empirical analysis on both syn-
thetic and real datasets are provided to illustrate that the proposed
metrics are better aligned with gold standard metrics. The project
website is available at: https://trustai4s-lab.github.io/fidelity.html.
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1 INTRODUCTION
With the proliferation of Graph Neural Networks (GNNs) in sen-
sitive sectors like healthcare and fraud detection, the demand for
understanding their decision-making processes has grown signifi-
cantly [14]. Recently, explanation techniques have been proposed
for GNNs, most commonly focusing on identifying a subgraph that
dominates the model’s prediction in a post-hoc sense [18].

In the design and study of explainable GNNs, both model de-
sign and choice of evaluation metrics are important. While most
efforts have primarily been made to develop new network archi-
tectures and optimization objectives to achieve more accurate ex-
planations [11, 16, 18], in this paper, we underscore the critical im-
portance of choosing the right evaluation metrics for the achieved
explanations. In an ideal scenario, quantitative evaluation of an
explanation subgraph can be achieved by comparing it with a gold
standard or ground truth explanation [16]. However, in real-world
applications, such ground truth explanation subgraphs are a rar-
ity, often making direct comparisons impracticable. In lieu of this,
surrogate fidelity metrics, namely 𝐹𝑖𝑑+, 𝐹𝑖𝑑− , and 𝐹𝑖𝑑Δ, have been
included to measure the faithfulness of explanation subgraphs. At
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its core, the intuition driving such metrics is straightforward: if
a subgraph is discriminative to the model, the prediction should
change significantly when it is removed from the input. Other-
wise, the prediction should be maintained. Hence, 𝐹𝑖𝑑+ is defined
as the difference in accuracy (or predicted probability) between
the original prediction and the new predictions of non-explanation
subgraph which is obtained by masking out the explanation sub-
graph [13], and 𝐹𝑖𝑑− measures the difference between predictions
of the original graph and explanation subgraph [17]. As prevail-
ing standards, these Fidelity metrics and their variants have been
widely used in existing popular platforms, such as GraphFramEx [2],
GraphXAI [1], GNNX-BENCH [9], and DIG [10].

Although intuitively correct, we argue that the aforementioned
Fidelity metrics come with significant drawbacks due to the im-
practical assumption that the to-be-explained model can make ac-
curate predictions of the explanation subgraph (in 𝐹𝑖𝑑−) or non-
explanation subgraph (in 𝐹𝑖𝑑+). This does not hold in a wide range
of real-world scenarios, because when edges are removed, the re-
sultant subgraphs might be Out Of Distribution (OOD) [4]. For
example, in MUTAG dataset [3], each graph is a molecule with
nodes representing atoms and edges describing the chemical bonds.
The functional group 𝑁𝑂2 is considered the dominating subgraph
that causes a molecule to be positively mutagenic. The explanation
subgraph only consists of 2 edges, which is much smaller than
whole molecular graphs. Such disparities in properties introduce
distribution shifts, putting the Fidelity metrics on shaky grounds,
because of the violation of a key assumption in machine learning:
the training and test data come from the same distribution [7].

To build an evaluation foundation for eXplainable AI (XAI) in
the graph domain, In this paper, we investigate robust fidelity mea-
surements for evaluating the correctness of explanations. There are
several non-trivial challenges associated with this problem. First,
the to-be-explained GNN model is usually evaluated as a black-box
model, which cannot be re-trained to ensure the generalization
capacity [7]. Second, the evaluation method is required to be stable
and ideally deterministic. As a result, complex parametric methods,
such as adversarial perturbations [6, 8], are not suitable as the re-
sults are affected by randomly initiated parameters. We propose
a generalized class of surrogate fidelity measures that are robust
to distribution shift issues in a wide range of scenarios based on
information theory. Our contributions are summarized as follows.

• We identify the OOD issue in Fidelity measurement in the ex-
plainable graph learning domain.

• We introduce novel evaluation metrics that are resilient to distri-
bution shifts, enhancing their applicability in real-world contexts.

https://trustai4s-lab.github.io/fidelity.html
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• Through rigorous empirical analyses on a diverse mix of syn-
thetic and real datasets, we validate that our approach resonates
well with gold standard benchmarks.

2 PRELIMINARIES
2.1 Notations
Weparameterize a labeled graph𝐺 by a tuple (V, E;𝑌,𝑿 ,𝑨), where
i)V = {𝑣1, 𝑣2, ..., 𝑣𝑛} is the node set, ii) E ⊆ V ×V is the edge set,
iii) 𝑌 is the graph class label taking values from finite set of classes
Y, iv) 𝑿 ∈ R𝑛×𝑑 is the feature matrix, where the 𝑖-th row of 𝑿 ,
denoted by 𝑿𝑖 ∈ R1×𝑑 , is the 𝑑-dimensional feature vector associ-
ated with node 𝑣𝑖 , 𝑖 ∈ [𝑛], and v) 𝑨 ∈ {0, 1}𝑛×𝑛 is the adjacency
matrix. The graph parameters (𝑌,A,𝑿 ) are generated according
to the joint probability measure 𝑃𝑌,A,𝑿 . Note that the adjacency
matrix determines the edge set E, where 𝐴𝑖 𝑗 = 1 if (𝑣𝑖 , 𝑣 𝑗 ) ∈ E,
and 𝐴𝑖 𝑗 = 0, otherwise. We write |𝐺 | and |E | interchangeably to
denote the number of edges of 𝐺 . Throughout this paper, we use
lower-case letters, such as 𝑔,𝑦, x, and a, to represent realizations
of the random objects 𝐺,𝑌,X and A, respectively. Given a labeled
graph 𝐺 = (V, E;𝑌,𝑿 ,𝑨), we denote the corresponding graph
without label as 𝐺 , and parameterize it by (V, E;𝑿 ,𝑨).
Graph Classification Task: In the graph classification task under
consideration:
• A set of labeled training data T = {(𝐺𝑖 , 𝑌𝑖 ) |𝑌𝑖 ∈ Y, 𝑖 ∈ [|T |]},
where (𝐺𝑖 , 𝑌𝑖 ) corresponds to the 𝑖-th graph and its associated
class label. The pairs (𝐺𝑖 , 𝑌𝑖 ), 𝑖 ∈ [|T |] are generated indepen-
dently according to an identical joint distribution induced by
𝑃𝑌,𝑿 ,A.

• A classification function (GNN model) 𝑓 (·) trained to classify
an unlabeled input graph 𝐺 into its class 𝑌 . It takes 𝐺 as input
and outputs a probability distribution 𝑃𝑌 on alphabet Y. The
reconstructed label 𝑌 is produced randomly based on 𝑃𝑌 .

In graph classification tasks,𝐺𝑖 is a random graph whose distribu-
tion is determined by the (general) joint distribution 𝑃𝑌,𝑨,𝒁 , with
the GNN model 𝑓 (·) trained to predict the label for graph𝐺 based
on the learned representation of 𝐺 . Formally we define a classifier
as follows.

Definition 2.1 (Classifier). For a classification task with under-
lying distribution 𝑃𝑌,𝑿 ,A, a classier is a function 𝑓 : G → ΔY . For
a given 𝜖 > 0, the classifier is called 𝜖-accurate if 𝑃 (𝑌 ≠ 𝑌 ) ≤ 𝜖 ,
where 𝑌 is produced according to probability distribution 𝑓 (𝐺).

Intuitively, an explanation in the context of graph learning is a
subgraph which is an almost sufficient statistic of the input graph
with respect to the output label. A high-level description of the
explainability problem is provided in the following.

Definition 2.2 (Explanation [11, 16]). Given a graph classifier
𝑓 (·) and an input graph𝐺 , the explanation is a sub-graph𝐺 (𝑒𝑥𝑝 ) =
(V (𝑒𝑥𝑝 ) , E (𝑒𝑥𝑝 ) ), such that 𝐺 (𝑒𝑥𝑝 ) is minimal and sufficient.

2.2 Fidelity
Fidelity evaluates the faithfulness of an explanation by measuring
the differences in the classifier’s output when (only) keeping or
removing the explanation subgraph [17]. 𝐹𝑖𝑑+ is defined as the

change of predicted probability between the original graph and the
new predictions after removing explanations [13]. 𝐹𝑖𝑑− quantifies
the prediction difference by only keeping the explanation subgraph
and masking out the remaining part. 𝐹𝑖𝑑Δ is the difference between
𝐹𝑖𝑑+ and 𝐹𝑖𝑑− . Given an input graph 𝐺 with label 𝑦, a classifier
𝑓 (·) and an explanation 𝐺

(𝑒𝑥𝑝 ) , these fidelity measurements are
formally defined as follows.

𝐹𝑖𝑑+ ≜ 𝑓 (𝐺)𝑦 − 𝑓 (𝐺 −𝐺 (𝑒𝑥𝑝 ) )𝑦,

𝐹𝑖𝑑− ≜ 𝑓 (𝐺)𝑦 − 𝑓 (𝐺 (𝑒𝑥𝑝 ) )𝑦,
𝐹𝑖𝑑Δ ≜ 𝐹𝑖𝑑+ − 𝐹𝑖𝑑− .

(1)

However, we argue that it is not well-behaved in a wide range
of scenarios of interest due to the OOD issue mentioned in the
introduction. To elaborate, for a good classifier, which has a low
probability of error, the prediction of 𝑓 on 𝐺 is reliable. However,
this is not necessarily true for the 𝑓 (𝐺 −𝐺𝑠 ) and 𝑓 (𝐺𝑠 ) terms. The
reason is that subgraphs 𝐺 − 𝐺 (𝑒𝑥𝑝 ) and 𝐺

(𝑒𝑥𝑝 ) are not typical
realizations. For instance, in many applications, it is very unlikely
or impossible to observe the explanation graph in isolation. As a
result, the predictions made by 𝑓 are unreliable.

3 ROBUST FIDELITY
Generally, in scenarios where𝐺 (𝑒𝑥𝑝 ) and𝐺−𝐺 (𝑒𝑥𝑝 ) are not typical
with respect to the distribution of 𝐺 , the existing fidelity measure
may not be well-behaved. We address this by introducing a class
of modified fidelity measures by modifying the definitions of 𝐹𝑖𝑑+
and 𝐹𝑖𝑑− in equation 1. To this end, we define the stochastic graph
sampling function 𝐸𝛼 : 𝐺 ↦→ 𝐺𝛼 with edge erasure probability
𝛼 ∈ [0, 1]. That is, 𝐸𝛼 (·) takes a graph 𝐺 as input, and outputs a
sampled graph 𝐺𝛼 whose node set is the same as that of 𝐺 , and
its edges are sampled from 𝐺 such that each edge is included with
probability 𝛼 and erased with probability 1 − 𝛼 , independently of
all other edges. We introduce the following generalized class of
surrogate fidelity measures, and show that they are robust to OOD
issues in a wide range of scenarios:

𝐹𝑖𝑑𝛼1,+ ≜ 𝑓 (𝐺)𝑦 − E𝑓 (𝐺 − 𝐸𝛼1 (𝐺
(𝑒𝑥𝑝 ) ))𝑦, (2)

𝐹𝑖𝑑𝛼2,− ≜ 𝑓 (𝐺)𝑦 − E𝑓 (𝐺
(𝑒𝑥𝑝 ) + 𝐸𝛼2 (𝐺 −𝐺

(𝑒𝑥𝑝 ) ))𝑦, (3)
𝐹𝑖𝑑𝛼1,𝛼2,Δ ≜ 𝐹𝑖𝑑𝛼1,+ − 𝐹𝑖𝑑𝛼2,−, (4)

where 𝛼1, 𝛼2 ∈ [0, 1]. Note that if 𝛼1 = 1 and 𝛼2 = 0, we recover the
original fidelity measures, i.e., 𝐹𝑖𝑑1,+ = 𝐹𝑖𝑑+, 𝐹𝑖𝑑0,− = 𝐹𝑖𝑑− , and
𝐹𝑖𝑑1,0Δ = 𝐹𝑖𝑑Δ. On the other hand, if 𝛼1 = 0 and 𝛼2 = 1, we have
𝐺 − 𝐸𝛼1 (𝐺

(𝑒𝑥𝑝 ) )) = 𝐸𝛼2 (𝐺 −𝐺
(𝑒𝑥𝑝 ) ) +𝐺 (𝑒𝑥𝑝 ) = 𝐺 . Consequently,

in this case there would be no OOD issue, however, the resulting
fidelity measure is not informative since 𝐹𝑖𝑑0,1,Δ = 0, for all clas-
sifiers 𝑓 and explanations. In practice, 𝛼1 < 1 and 𝛼2 > 0 would
yield a suitable fidelity measure as this choice alleviates the OOD
problem.

Next, we provide the pseudo-code for computing the proposed
𝐹𝑖𝑑𝛼1,+ and 𝐹𝑖𝑑𝛼2,− in Alg. 1 and Alg. 2, respectively. Suppose that
we have a set of input graphs, {𝐺𝑖 }T𝑖=1. For each graph 𝐺𝑖 , the

explanation subgraph to be evaluated is denoted by 𝐺
(𝑒𝑥𝑝 )
𝑖 . The
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model to be explained is denoted by 𝑓 (·). We have two hyper-
parameters, 𝑀 and 𝛼1 in computing 𝐹𝑖𝑑𝛼1,+. 𝑀 is the number of
samples and 𝛼1, introduced in equation 2, is the ratio of edges
sampled from explanation subgraph. For 𝐹𝑖𝑑𝛼2,− , we have another
hyper-parameter 𝛼2 instead, which indicates the ratio of edges
sampled from non-explanation subgraph.

Algorithm 1 Computating 𝐹𝑖𝑑𝛼1,+

1: Input: A set of input graphs and their subgraphs { (𝐺𝑖 ,𝐺
(𝑒𝑥𝑝 )
𝑖 }T

𝑖=1 , a GNNmodel
𝑓 ( ·) , hyperparameters𝑀 and 𝛼1 .

2: Output: 𝐹𝑖𝑑𝛼1,+ of {𝐺
(𝑒𝑥𝑝 )
𝑖 }T

𝑖=1 .

3: for each pair (𝐺𝑖 ,𝐺
(𝑒𝑥𝑝 )
𝑖 ) do

4: for𝑚 from 1 to𝑀 do
5: 𝐸𝛼1 (Ψ(𝐺𝑖 ) ) ) ← sample 𝛼1 edges from𝐺

(𝑒𝑥𝑝 )
𝑖

6: 𝐺𝑖,𝑚 ← 𝐺𝑖 − 𝐸𝛼1 (𝐺
(𝑒𝑥𝑝 )
𝑖 )

7: 𝐹𝑖𝑑𝛼1+ [𝑖,𝑚] ← 𝑓 (𝐺𝑖 )𝑦𝑖 − 𝑓 (𝐺𝑖,𝑚 )𝑦𝑖
8: end for
9: 𝐹𝑖𝑑𝛼1+ [𝑖 ] ←

1
𝑀

∑𝑀
𝑚=1 𝐹𝑖𝑑𝛼1,+ [𝑖,𝑚]

10: end for
11: 𝐹𝑖𝑑𝛼1,+ ←

1
T
∑T

𝑖=1 𝐹𝑖𝑑𝛼1,+ [𝑖 ]
12: Return 𝐹𝑖𝑑𝛼1,+ .

Algorithm 2 Computating 𝐹𝑖𝑑𝛼2,−

1: Input:A set of input graphs and their subgraphs { (𝐺𝑖 ,𝐺
(𝑒𝑥𝑝 )
𝑖 }T

𝑖=1 , a GNN model
𝑓 ( ·) , hyperparameters𝑀 and 𝛼2 .

2: Output: 𝐹𝑖𝑑𝛼2,− of {𝐺 (𝑒𝑥𝑝 )𝑖 }T
𝑖=1 .

3: for each pair (𝐺𝑖 ,𝐺
(𝑒𝑥𝑝 )
𝑖 ) do

4: for𝑚 from 1 to𝑀 do
5: 𝐺

𝑐

𝑖 ← 𝐺𝑖 −𝐺
(𝑒𝑥𝑝 )
𝑖

6: 𝐸𝛼2 (𝐺
𝑐

𝑖 ) ← sample 𝛼2 edges from𝐺
𝑐

𝑖

7: 𝐹𝑖𝑑𝛼2,− [𝑖,𝑚] ← 𝑓 (𝐺𝑖 )𝑦𝑖 − 𝑓 (𝐸𝛼2 (𝐺
𝑐

𝑖 ) +𝐺
(𝑒𝑥𝑝 )
𝑖 )𝑦𝑖

8: end for
9: 𝐹𝑖𝑑𝛼2,− [𝑖 ] ←

1
𝑀

∑𝑀
𝑚=1 𝐹𝑖𝑑𝛼2,− [𝑖,𝑚]

10: end for
11: 𝐹𝑖𝑑𝛼2,− ←

1
T
∑T

𝑖=1 𝐹𝑖𝑑𝛼2,− [𝑖 ]
12: Return 𝐹𝑖𝑑𝛼2,− .

It can be noted that robust fidelity cannot avoid the OOD problem
during the evaluation processing. Compared to original Fidelity,
our method can alleviate the effect of OOD and estimate the true
fidelity score by using sampling methods.

4 EXPERIMENTS
In this section, we empirically verify the effectiveness of the gener-
alized class of surrogate fidelity measures. Two benchmark datasets
with ground truth explanations are used for evaluation, BA-2motifs [11]
and MUTAG [3]. We consider both GCN and GIN architectures [15,
16] as the models to be explained. We evaluate the accuracy perfor-
mance of GNN models on training, validation, and test sets. Both
GCN and GIN achieve good performances in these datasets, with
most test accuracy scores above 0.9. Following routinely adopted
settings [11, 16, 18], we can safely assume that both models can cor-
rectly use the informative components(motifs) in the input graphs
to make predictions.
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Figure 1: Parameter studies on the effects of 𝛼1 and 𝛼2.

4.1 Quantitative Evaluation by Comparing to
the Gold Standard

In adopted datasets, motifs are included which determine node
labels or graph labels. Thus, the relationships between graph exam-
ples and data labels are well-defined by humans. The correctness
of an explanation can be evaluated by comparing it to the ground
truth motif. Previous studies [11, 16] usually model the evaluation
as an edge classification problem. Specifically, edges in the ground-
truth explanation are treated as labels, and importance weights
given by the explainability method are viewed as prediction scores.
Then, AUC scores are considered as the metric for correctness. In
this section, we use a more tractable metric, edit distance [5] to
compare achieved explanations with the ground-truth motifs as a
Gold Standard metric.

Consider an input graph 𝐺𝑖 and let 𝐺 (𝑔𝑡 )𝑖 be the ground-truth
explanation subgraph, i.e., the motif. We construct a set of ex-
planation functions, with varying qualities, to evaluate the well-
behavedness of the proposed fidelity measures. To elaborate, for a
given 𝛽1, 𝛽2 ∈ [0, 1], we construct an explanation function Ψ𝛽1,𝛽2 (·)
by random IID sampling of the explanation subgraph edges, and the
non-explanation subgraph edges, with sampling rates 𝛽1 and 𝛽2,
respectively. That is, to construct Ψ𝛽1,𝛽2 (𝐺𝑖 ), we remove 𝛽1 ratio

of edges from ground-truth explanation 𝐺 (𝑔𝑡 )𝑖 via random IID sam-
pling, and randomly add 𝛽2 ∈ [0, 1] ratio of edges from 𝐺𝑖 −𝐺

(𝑔𝑡 )
𝑖

to 𝐺 (𝑔𝑡 )𝑖 by random IID sampling from the non-explanation sub-
graph. Clearly, the explanation function should receive a better
fidelity score for smaller (𝛽1, 𝛽2). We sweep 𝛽1 and 𝛽2 in the range
[0, 0.1, 0.3, 0.5, 0.7, 0.9], and for each combination (𝛽1, 𝛽2), we ran-
domly sample 10 candidate explanations. We adopt the proposed
𝐹𝑖𝑑𝛼1,+, 𝐹𝑖𝑑𝛼2,− , 𝐹𝑖𝑑𝛼1,𝛼2,Δ, where we have taken 𝛼1 = 1−𝛼2 = 0.1,
as well as their counterparts to evaluate their qualities. For each
combination, we calculate the average metric scores.

As analyzed in previousworks [18], fidelitymeasurements ignore
the size of the explanation. Thus, redundant explanations are usu-
ally with high 𝐹𝑖𝑑+ and low 𝐹𝑖𝑑− scores. In the extreme case, with
the whole input graph as the explanation, fidelity measures achieve
the trivial optimal scores. This limitation is inherent and cannot not
solved with the proposed metrics. To fairly compare the proposed
metrics with the original ones, for each 𝛽2, given a fidelity measure-
ment, we use the Spearman correlation coefficient [12] between
it and the gold standard edit distance to quantitatively evaluate
the quality of the metric. Then, we report the average correlation
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Table 1: Spearman correlation coefficient between metric and gold standard edit distance.

Dataset 𝐹𝑖𝑑+ ↓ 𝐹𝑖𝑑𝛼1,+ ↓ 𝐹𝑖𝑑− ↑ 𝐹𝑖𝑑𝛼2,− ↑ 𝐹𝑖𝑑Δ ↓ 𝐹𝑖𝑑𝛼1,𝛼2,Δ ↓ AUC

GCN BA-2motifs -0.924 -1.000 0.819 1.000 -0.990 -1.000 -1.000
MUTAG -0.190 -1.000 -0.276 1.000 -0.105 -1.000 -1.000

GIN BA-2motifs -0.838 -1.000 0.905 1.000 -1.000 -1.000 -1.000
MUTAG -1.000 -1.000 0.886 1.000 -0.990 -1.000 -1.000

scores in Table 1. The number of sampling in our measurements
are set to 50.

We have the following observations in Table 1. First, 𝐹𝑖𝑑𝛼1,+
consistently yields correlation scores near -1.0 with the edit distance.
It signifies a robust inverse relationship between the two metrics.
In contrast, the original 𝐹𝑖𝑑+ metric exhibits mixed results with
half-positive and half-negative correlations. This inconsistency
in 𝐹𝑖𝑑+ underscores the potential superiority and consistency of
our proposed 𝐹𝑖𝑑𝛼1,+ in aligning closely with the edit distance
across various datasets. Moreover, the proposed 𝐹𝑖𝑑𝛼2,− is strongly
positively related to gold-standard edit distance compared to the
original 𝐹𝑖𝑑− . we have similar observations in 𝐹𝑖𝑑𝛼1,𝛼2,Δ and 𝐹𝑖𝑑Δ.
Third, we observe that the AUC score of edge classification, which is
used in previous papers, is perfectly aligned with the gold standard
edit distance, which verifies the correctness of using AUC as the
metric.

4.2 Effects of 𝛼1 and 𝛼2.
As shown in our theoretical analysis, 𝛼1 is the rate of removing
edges from explanation subgraphs in 𝐹𝑖𝑑𝛼1,+ and 𝛼2 is the rate
of retaining edges from non-explanation subgraphs in 𝐹𝑖𝑑𝛼2,− . To
empirically verify the effects of these two parameters, we use the
GCN model and vary these two hyper-parameters in the range
[0.1, 0.3, 0.5, 0.7, 0.9]. Results of Spearman correlation scores are
shown in Figure 1. We observe that when 𝛼1 = 0.1 and 𝛼2 = 0.9, the
proposed 𝐹𝑖𝑑𝛼1,+ and 𝐹𝑖𝑑𝛼2,− are strongly aligned with the gold
standard edit distance. As 𝛼1 increases, the number of removing
edges from explanation subgraphs increases, leading to more a se-
vere distribution shifting problem. Thus, the Spearman correlation
coefficient between 𝐹𝑖𝑑𝛼1,+ and edit distance increases. The similar
phenomena can be observed in 𝐹𝑖𝑑𝛼2,− . As 𝛼2 decreases, a smaller
number of edges will be added from non-explanation subgraphs,
which leads to the distribution shift problem.

5 CONCLUSION
In this paper, we have explored the limitations intrinsic in widely
used evaluationmeasures for GNN explainers, including the Fidelity
surrogate measures, and identified several pitfalls of conventional
fidelity metrics, particularly their vulnerability to distribution shifts.
We have introduced a set of evaluation metrics, which utilize a sam-
pling technique to mitigate such distribution shift issues and avoid
evaluating out-of-distribution inputs during evaluation. We have
provided extensive empirical evaluation to validate the peformance
of the proposed metrics across various datasets, demonstrating
their alignment with gold standard benchmarks.
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